
Bulwark Documentation
Release 0.5.3

Zax Rosenberg

Nov 11, 2019

Contents

1 Why? 3

2 Installation 5

3 Usage 7
3.1 Contributing . 8

Python Module Index 19

Index 21

i

ii

Bulwark Documentation, Release 0.5.3

Bulwark is a package for convenient property-based testing of pandas dataframes, supported for Python 3.5+.

Documentation: https://bulwark.readthedocs.io/en/latest/index.html

This project was heavily influenced by the no-longer-supported Engarde library by Tom Augspurger(thanks for the
head start, Tom!), which itself was modeled after the R library assertr.

Contents 1

https://bulwark.readthedocs.io/en/latest/index.html
https://github.com/TomAugspurger/engarde
https://github.com/ropenscilabs/assertr

Bulwark Documentation, Release 0.5.3

2 Contents

CHAPTER 1

Why?

Data are messy, and pandas is one of the go-to libraries for analyzing tabular data. In the real world, data analysts and
scientists often feel like they don’t have the time or energy to think of and write tests for their data. Bulwark’s goal
is to let you check that your data meets your assumptions of what it should look like at any (and every) step in your
code, without making you work too hard.

3

Bulwark Documentation, Release 0.5.3

4 Chapter 1. Why?

CHAPTER 2

Installation

pip install bulwark

or

conda install -c conda-forge bulwark

5

Bulwark Documentation, Release 0.5.3

6 Chapter 2. Installation

CHAPTER 3

Usage

Bulwark comes with checks for many of the common assumptions you might want to validate for the functions that
make up your ETL pipeline, and lets you toss those checks as decorators on the functions you’re already writing:

import bulwark.decorators as dc

@dc.IsShape((-1, 10))
@dc.IsMonotonic(strict=True)
@dc.HasNoNans()
def compute(df):

complex operations to determine result
...

return result_df

Still want to have more robust test files? Bulwark’s got you covered there, too, with importable functions.

import bulwark.checks as ck

df.pipe(ck.has_no_nans())

Won’t I have to go clean up all those decorators when I’m ready to go to production? Nope - just toggle the built-in
“enabled” flag available for every decorator.

@dc.IsShape((3, 2), enabled=False)
def compute(df):

complex operations to determine result
...

return result_df

What if the test I want isn’t part of the library? Use the built-in CustomCheck to use your own custom function!

import bulwark.checks as ck
import bulwark.decorators as dc
import numpy as np
import pandas as pd

(continues on next page)

7

Bulwark Documentation, Release 0.5.3

(continued from previous page)

def len_longer_than(df, l):
if len(df) <= l:

raise AssertionError("df is not as long as expected.")
return df

@dc.CustomCheck(len_longer_than, 10, enabled=False)
def append_a_df(df, df2):

return df.append(df2, ignore_index=True)

df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
df2 = pd.DataFrame({"a": [1, np.nan, 3, 4], "b": [4, 5, 6, 7]})

append_a_df(df, df2) # doesn't fail because the check is disabled

What if I want to run a lot of tests and want to see all the errors at once? You can use the built-in MultiCheck. It
will collect all of the errors and either display a warning message of throw an exception based on the warn flag. You
can even use custom functions with MultiCheck:

def len_longer_than(df, l):
if len(df) <= l:

raise AssertionError("df is not as long as expected.")
return df

`checks` takes a dict of function: dict of params for that function.
Note that those function params EXCLUDE df.
Also note that when you use MultiCheck, there's no need to use CustomCheck - just
→˓feed in the function.
@dc.MultiCheck(checks={ck.has_no_nans: {"columns": None},

len_longer_than: {"l": 6}},
warn=False)

def append_a_df(df, df2):
return df.append(df2, ignore_index=True)

df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
df2 = pd.DataFrame({"a": [1, np.nan, 3, 4], "b": [4, 5, 6, 7]})

append_a_df(df, df2)

See examples to see more advanced usage.

3.1 Contributing

Bulwark is always looking for new contributors! We work hard to make contributing as easy as possible, and previous
open source experience is not required! Please see contributing.md for how to get started.

Thank you to all our past contributors, especially these folks:

8 Chapter 3. Usage

https://bulwark.readthedocs.io/en/latest/examples.html
docs/contributing.md
https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/links/0
https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/links/1
https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/links/2
https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/links/3
https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/links/4

Bulwark Documentation, Release 0.5.3

3.1.1 Changelog

Changed

• Hotfix the enabled flag for CustomCheck and decorator arg issues.

• Swap custom_check’s func and df params

Added

• Add conda-forge

Changed

• Add python_requires in setup.py to limit install to supported Python versions.

Changed

• Remove unnecessary six dependency

Added

• Add support for old Engarde function names with deprecation warnings for v0.7.0.

• Add ability to check bulwark version with bulwark.__version__

• Add status badges to README.md

• Add Sphinx markdown support and single-source readme, changelog.

Changed

• Upgrade Development Status to Beta (from Alpha)

• Update gitignore for venv

• Update contributing documentation

• Single-sourced project version

Changed

• Hotfix to allow import bulwark to work.

Changed

• Hotfix to allow import bulwark to work.

Added

• Add has_no_x, has_no_nones, and has_set_within_vals.

Changed

• has_no_nans now checks only for np.nans and not also None. Checking for None is available through
has_no_nones.

Added

• Add exact_order param to has_columns

Changed

3.1. Contributing 9

https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/links/5
https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/links/6
https://sourcerer.io/fame/ZaxR/ZaxR/bulwark/links/7

Bulwark Documentation, Release 0.5.3

• Hotfix for reversed has_columns error messages for missing and unexpected columns

• Breaking change to has_columns parameter name exact, which is now exact_cols

Added

• Add has_columns check, which asserts that the given columns are contained within the df or exactly match
the df’s columns.

• Add changelog

Changed

• Breaking change to rename unique_index to has_unique_index for consistency

Changed

• Improve code base to automatically generate decorators for each check

• Hotfix multi_check and unit tests

Changed

• Hotfix to setup.py for the sphinx.setup_command.BuildDoc requirement.

Changed

• Breaking change to rename unique_index to has_unique_index for consistency

3.1.2 Installation

pip install bulwark

or

conda install -c conda-forge bulwark

3.1.3 Quickstart

Bulwark is designed to be easy to use and easy to add checks to code while you’re writing it.

First, install Bulwark:

pip install bulwark

Next, import bulwark. You can either use function versions of the checks or decorator versions. By convension, import
either/both of these as follow:

import bulwark.checks as ck
import bulwark.decorators as dc

If you’ve chosen to use decorators to interact with the checks (the recommended method for checks to be run on each
function call), you can write a function for your project like normal, but with your chosen decorators on top:

import bulwark.decorators as dc
import pandas as pd

@dc.HasNoNans()
(continues on next page)

10 Chapter 3. Usage

Bulwark Documentation, Release 0.5.3

(continued from previous page)

def add_five(df):
return df + 5

df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
add_five(df)

You can stack multiple decorators on top of each other to have the first failed decorator check result in an assertion
error or use the built-in MultiCheck to collect all of the errors are raise them at once.

See examples to see more advanced usage.

3.1.4 Design

It’s important that Bulwark not get in your way. Your task is hard enough without a bunch of assertions cluttering up
the logic of the code. And yet, it does help to explicitly state the assumptions fundamental to your analysis. Decorators
provide a nice compromise.

Checks

Each check:

• takes a pd.DataFrame as its first argument, with optional additional arguments,

• make an assert about the pd.DataFrame, and

• return the original, unaltered pd.DataFrame

If the assertion fails, an AssertionError is raised and Bulwark tries to print out some informative information
about where the failure occurred.

Decorators

Each check has an auto-magically-generated associated decorator. The decorator simply marshals arguments, allow-
ing you to make your assertions outside the actual logic of your code. Besides making it quick and easy to add checks
to a function, decorators also come with bonus capabilities, including the ability to enable/disable the check as well as
switch from raising an error to logging a warning.

3.1.5 Examples

Coming soon!

3.1.6 API

bulwark.checks Each function in this module should:
bulwark.decorators Generates decorators for each check in checks.py.

bulwark.checks

Each function in this module should:

3.1. Contributing 11

examples.html

Bulwark Documentation, Release 0.5.3

• take a pd.DataFrame as its first argument, with optional additional arguments,

• make an assert about the pd.DataFrame, and

• return the original, unaltered pd.DataFrame

Functions

custom_check(df, check_func, *args, **kwargs) Assert that check(df, *args, **kwargs) is true.
has_columns(df, columns[, exact_cols, . . .]) Asserts that df has columns
has_dtypes(df, items) Asserts that df has dtypes
has_no_infs(df[, columns]) Asserts that there are no np.infs in df.
has_no_nans(df[, columns]) Asserts that there are no np.nans in df.
has_no_neg_infs(df[, columns]) Asserts that there are no np.infs in df.
has_no_nones(df[, columns]) Asserts that there are no Nones in df.
has_no_x(df[, values, columns]) Asserts that there are no user-specified values in df ’s

columns.
has_set_within_vals(df, items) Asserts that all given values are found in columns’ val-

ues.
has_unique_index(df) Asserts that df ’s index is unique.
is_monotonic(df[, items, increasing, strict]) Asserts that the df is monotonic.
is_same_as(df, df_to_compare, **kwargs) Asserts that two pd.DataFrames are equal.
is_shape(df, shape) Asserts that df is of a known row x column shape.
multi_check(df, checks[, warn]) Asserts that all checks pass.
one_to_many(df, unitcol, manycol) Asserts that a many-to-one relationship is preserved be-

tween two columns.
unique(df[, columns]) Asserts that columns in df only have unique values.
has_vals_within_n_std(df[, n]) Asserts that every value is within n standard deviations

of its column’s mean.
has_vals_within_range(df[, items]) Asserts that df is within a range.
has_vals_within_set(df[, items]) Asserts that df is a subset of items.

bulwark.decorators

Generates decorators for each check in checks.py.

Functions

CustomCheck(*args, **kwargs)

Notes

decorator_factory(decorator_name, func) Takes in a function and outputs a class that can be used
as a decorator.

Classes

BaseDecorator(*args, **kwargs)
Continued on next page

12 Chapter 3. Usage

Bulwark Documentation, Release 0.5.3

Table 4 – continued from previous page
HasColumns alias of bulwark.decorators.

decorator_factory.<locals>.
decorator_name

HasDtypes alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

HasNoInfs alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

HasNoNans alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

HasNoNegInfs alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

HasNoNones alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

HasNoX alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

HasSetWithinVals alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

HasUniqueIndex alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

IsMonotonic alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

IsSameAs alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

IsShape alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

MultiCheck alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

OneToMany alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

Unique alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

WithinNStd alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

WithinRange alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

Continued on next page

3.1. Contributing 13

Bulwark Documentation, Release 0.5.3

Table 4 – continued from previous page
WithinSet alias of bulwark.decorators.

decorator_factory.<locals>.
decorator_name

3.1.7 How to Contribute

First off, thank you for considering contributing to bulwark! It’s thanks to people like you that we continue to have
a high-quality, updated and documented tool.

There are a few key ways to contribute:

1. Writing new code (checks, decorators, other functionality)

2. Writing tests

3. Writing documentation

4. Supporting fellow developers on StackOverflow.com.

No contribution is too small! Please submit as many fixes for typos and grammar bloopers as you can!

Regardless of which of these options you choose, this document is meant to make contribution more accessible by
codifying tribal knowledge and expectations. Don’t be afraid to ask questions if something is unclear!

Workflow

1. Set up Git and a GitHub account

2. Bulwark follows a forking workflow, so next fork and clone the bulwark repo.

3. Set up a development environment.

4. Create a feature branch. Pull requests should be limited to one change only, where possible. Contributing
through short-lived feature branches ensures contributions can get merged quickly and easily.

5. Rebase on master and squash any unnecessary commits. We do not squash on merge, because we trust our
contributors to decide which commits within a feature are worth breaking out.

6. Always add tests and docs for your code. This is a hard rule; contributions with missing tests or documentation
can’t be merged.

7. Make sure your changes pass our CI. You won’t get any feedback until it’s green unless you ask for it.

8. Once you’ve addressed review feedback, make sure to bump the pull request with a short note, so we know
you’re done.

Each of these abbreviated workflow steps has additional instructions in sections below.

Development Practices and Standards

• Obey follow PEP-8 and Google’s docstring format.

– The only exception to PEP-8 is that line length can be up to 100 characters.

• Use underscores to separate words in non-class names. E.g. n_samples rather than nsamples.

• Don’t ever use wildcard imports (from module import *). It’s considered to be a bad practice by the
official Python recommendations. The reasons it’s undesireable are that it pollutes the namespace, makes it
harder to identify the origin of code, and, most importantly, prevents using a static analysis tool like pyflakes to
automatically find bugs.

14 Chapter 3. Usage

https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://docs.python.org/3/tutorial/modules.html#importing-from-a-package

Bulwark Documentation, Release 0.5.3

• Any new module, class, or function requires units tests and a docstring. Test-Driven Development (TDD) is
encouraged.

• Don’t break backward compatibility. In the event that an interface needs redesign to add capability, a deprecation
warning should be raised in future minor versions, and the change will only be merged into the next major
version release.

• Semantic line breaks are encouraged.

Set up Git and a GitHub Account

• If you don’t already have a GitHub account, you can register for free.

• If you don’t already have Git installed, you can follow these git installation instructions.

Fork and Clone Bulwark

1. You will need your own fork to work on the code. Go to the Bulwark project page and hit the Fork

button.

2. Next, you’ll want to clone your fork to your machine:

git clone https://github.com/your-user-name/bulwark.git bulwark-dev
cd bulwark-dev
git remote add upstream https://github.com/ZaxR/bulwark.git

Set up a Development Environment

Bulwark supports Python 3.5+. For your local development version of Python it’s recommended to use version 3.5
within a virtual environment to ensure newer features aren’t accidentally used.

Within your virtual environment, you can easily install an editable version of bulwark along with its tests and docs
requirements with:

pip install -e '.[dev]'

At this point you should be able to run/pass tests and build the docs:

python -m pytest

cd docs
make html

To avoid committing code that violates our style guide, we strongly advise you to install pre-commit hooks, which
will cause your local commit to fail if our style guide was violated:

pre-commit install

You can also run them anytime (as our tox does) using:

pre-commit run --all-files

You can also use tox to run CI in all of the appropriate environments locally, as our cloud CI will:

3.1. Contributing 15

https://sembr.org/
https://help.github.com/en/articles/set-up-git
https://github.com/ZaxR/bulwark
https://pre-commit.com/

Bulwark Documentation, Release 0.5.3

tox
or, use the -e flag for a specific environment. For example:
tox -e py35

Create a Feature Branch

To add a new feature, you will create every feature branch off of the master branch:

git checkout master
git checkout -b feature/<feature_name_in_snake_case>

Rebase on Master and Squash

If you are new to rebase, there are many useful tutorials online, such as Atlassian’s. Feel free to follow your own
workflow, though if you have an default git editor set up, interactive rebasing is an easy way to go about it:

git checkout feature/<feature_name_in_snake_case>
git rebase -i master

Create a Pull Request to the master branch

Create a pull request to the master branch of Bulwark. Tests will be be triggered to run via Travis CI. Check that your
PR passes CI, since it won’t be reviewed for inclusion until it passes all steps.

For Maintainers

Steps for maintainers are largely the same, with a few additional steps before releasing a new version:

• Update version in bulwark/project_info.py, which updates three spots: setup.py, bulwark/__init__.py, and
docs/conf.py.

• Update the CHANGELOG.md and the main README.md (as appropriate).

• Rebuild the docs in your local version to verify how they render using:

pip install -e ".[dev]"
sphinx-apidoc -o ./docs/_source ./bulwark -f
cd docs
make html

• Test distribution using TestPyPI with Twine:

Installation
python3 -m pip install --user --upgrade setuptools wheel
python3 -m pip install --user --upgrade twine

Build/Upload dist and install library
python3 setup.py sdist bdist_wheel
python3 -m twine upload --repository-url https://test.pypi.org/legacy/ dist/*
pip install --index-url https://test.pypi.org/simple/bulwark

• Releases are indicated using git tags. Create a tag locally for the apporiate commit in master, and push that tag
to GitHub. Travis’s CD is triggered on tags within master:

16 Chapter 3. Usage

https://www.atlassian.com/git/tutorials/rewriting-history/git-rebase
https://help.github.com/en/articles/creating-a-pull-request-from-a-fork
https://travis-ci.com/ZaxR/bulwark

Bulwark Documentation, Release 0.5.3

git tag -a v<#.#.#> <SHA-goes-here> -m "bulwark version <#.#.#>"
git push origin --tags

3.1. Contributing 17

Bulwark Documentation, Release 0.5.3

18 Chapter 3. Usage

Python Module Index

b
bulwark.checks, 11
bulwark.decorators, 12

19

Bulwark Documentation, Release 0.5.3

20 Python Module Index

Index

B
bulwark.checks (module), 11
bulwark.decorators (module), 12

21

	Why?
	Installation
	Usage
	Contributing

	Python Module Index
	Index

