
Bulwark Documentation
Release 0.4.2

Zax Rosenberg

Aug 24, 2019

Contents

1 Why? 3
1.1 Installation . 3

2 Usage 5
2.1 Changelog . 6
2.2 Installation . 7
2.3 Quickstart . 7
2.4 Design . 7
2.5 Examples . 8
2.6 API . 8
2.7 Contributing . 10

Python Module Index 13

Index 15

i

ii

Bulwark Documentation, Release 0.4.2

Bulwark is a package for convenient property-based testing of pandas dataframes, supported for Python 3.5+.

This project was heavily influenced by the no-longer-supported Engarde. library by Tom Augspurger (thanks for the
head start, Tom!), which itself was modeled after the R library assertr.

Contents 1

https://github.com/TomAugspurger/engarde
https://github.com/ropenscilabs/assertr

Bulwark Documentation, Release 0.4.2

2 Contents

CHAPTER 1

Why?

Data are messy, and pandas is one of the go-to libraries for analyzing tabular data. In the real world, data analysts and
scientists often feel like they don’t have the time or energy to think of and write tests for their data. Bulwark’s goal
is to let you check that your data meets your assumptions of what it should look like at any (and every) step in your
code, without making you work too hard.

1.1 Installation

pip install bulwark

3

Bulwark Documentation, Release 0.4.2

4 Chapter 1. Why?

CHAPTER 2

Usage

Bulwark comes with checks for many of the common assumptions you might want to validate for the functions that
make up your ETL pipeline, and lets you toss those checks as decorators on the functions you’re already writing:

import bulwark.decorators as dc

@dc.IsShape((-1, 10))
@dc.IsMonotonic(strict=True)
@dc.HasNoNans()
def compute(df):

complex operations to determine result
...
return result_df

Still want to have more robust test files? Bulwark’s got you covered there, too, with importable functions.

import bulwark.checks as ck

df.pipe(ck.has_no_nans())

Won’t I have to go clean up all those decorators when I’m ready to go to production? Nope - just toggle the built-in
debug_mode flag available for every decorator.

@dc.IsShape((3, 2), enabled=False)
def compute(df):

complex operations to determine result
...
return result_df

What if the test I want isn’t part of the library? Use the built-in CustomCheck to use your own custom function!

def len_longer_than(df, l):
if len(df) <= l:

raise AssertionError("df is not as long as expected.")
return df

(continues on next page)

5

Bulwark Documentation, Release 0.4.2

(continued from previous page)

@dc.CustomCheck(len_longer_than, df=df, l=6)
def append_a_df(df, df2):

return df.append(df2, ignore_index=True)

df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
df2 = pd.DataFrame({"a": [1, np.nan, 3, 4], "b": [4, 5, 6, 7]})

append_a_df(df, df2)

What if I want to run a lot of tests and want to see all the errors at once? You can use the built-in MultiCheck. It will
collect all of the errors and either display a warning message of throw an exception based on the warn flag. You can
even use custom functions with MultiCheck:

def len_longer_than(df, l):
if len(df) <= l:

raise AssertionError("df is not as long as expected.")
return df

`checks` takes a dict of function: dict of params for that function.
Note that those function params EXCLUDE df.
Also note that when you use MultiCheck, there's no need to use CustomCheck - just
→˓feed in the function.
@dc.MultiCheck(checks={ck.has_no_nans: {"columns": None},

len_longer_than: {"l": 6}},
warn=False)

def append_a_df(df, df2):
return df.append(df2, ignore_index=True)

df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
df2 = pd.DataFrame({"a": [1, np.nan, 3, 4], "b": [4, 5, 6, 7]})

append_a_df(df, df2)

See Examples to see more advanced usage.

2.1 Changelog

[0.4.2] - 2019-07-28 Changed - Hotfix to allow import bulwark to work.

[0.4.1] - 2019-07-26 Changed - Hotfix to allow import bulwark to work.

[0.4.0] - 2019-07-26 Added - Add has_no_x, has_no_nones, and has_set_within_vals.

Changed - has_no_nans now checks only for np.nans and not also None. Checking for None is available through
has_no_nones.

[0.3.0] - 2019-05-30 Added - Add exact_order param to has_columns

Changed - Hotfix for reversed has_columns error messages for missing and unexpected columns - Breaking change to
has_columns parameter name exact, which is now exact_cols

[0.2.0] - 2019-05-29 Added - Add has_columns check, which asserts that the given columns are contained within the
df or exactly match the df’s columns. - Add changelog

Changed - Breaking change to rename unique_index to has_unique_index for consistency

6 Chapter 2. Usage

https://docs.python.org/3/distutils/examples.html#examples

Bulwark Documentation, Release 0.4.2

[0.1.2] - 2019-01-13 Changed - Improve code base to automatically generate decorators for each check - Hotfix
multi_check and unit tests

[0.1.1] - 2019-01-12 Changed - Hotfix to setup.py for the sphinx.setup_command.BuildDoc requirement.

[0.1.0] - 2019-01-12 Changed - Breaking change to rename unique_index to has_unique_index for consistency

2.2 Installation

pip install bulwark

2.3 Quickstart

Bulwark is designed to be easy to use and easy to add checks to code while you’re writing it.

First, install Bulwark:

pip install bulwark

Next, import bulwark. You can either use function versions of the checks or decorator versions. By convension, import
either/both of these as follow:

import bulwark.checks as ck
import bulwark.decorators as dc

If you’ve chosen to use decorators to interact with the checks (the recommended method for checks to be run on each
function call), you can write a function for your project like normal, but with your chosen decorators on top:

import bulwark.decorators as dc
import pandas as pd

@dc.HasNoNans()
def add_five(df):

return df + 5

df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
add_five(df)

You can stack multiple decorators on top of each other to have the first failed decorator check result in an assertion
error or use the built-in MultiCheck to collect all of the errors are raise them at once.

See Examples to see more advanced usage.

2.4 Design

It’s important that Bulwark not get in your way. Your task is hard enough without a bunch of assertions cluttering up
the logic of the code. And yet, it does help to explicitly state the assumptions fundamental to your analysis. Decorators
provide a nice compromise.

2.2. Installation 7

https://docs.python.org/3/distutils/examples.html#examples

Bulwark Documentation, Release 0.4.2

2.4.1 Checks

Each check: - takes a pd.DataFrame as its first argument, with optional additional arguments, - make an assert about
the pd.DataFrame, and - return the original, unaltered pd.DataFrame

If the assertion fails, an AssertionError is raised and Bulwark tries to print out some informative information
about where the failure occurred.

2.4.2 Decorators

Each check has an auto-magically-generated associated decorator. The decorator simply marshals arguments, allow-
ing you to make your assertions outside the actual logic of your code. Besides making it quick and easy to add checks
to a function, decorators also come with bonus capabilities, including the ability to enable/disable the check as well as
switch from raising an error to logging a warning.

2.5 Examples

Coming soon!

2.6 API

bulwark.checks Each function in this module should:
bulwark.decorators

2.6.1 bulwark.checks

Each function in this module should:

• take a pd.DataFrame as its first argument, with optional additional arguments,

• make an assert about the pd.DataFrame, and

• return the original, unaltered pd.DataFrame

Functions

custom_check(check_func, df, *args, **kwargs) Assert that check(df, *args, **kwargs) is true.
has_columns(df, columns[, exact_cols, . . .]) Asserts that df has columns
has_dtypes(df, items) Asserts that df has dtypes
has_no_infs(df[, columns]) Asserts that there are no np.infs in df.
has_no_nans(df[, columns]) Asserts that there are no np.nans in df.
has_no_neg_infs(df[, columns]) Asserts that there are no np.infs in df.
has_no_nones(df[, columns]) Asserts that there are no Nones in df.
has_no_x(df[, values, columns]) Asserts that there are no user-specified values in df ’s

columns.
has_set_within_vals(df, items) Asserts that all given values are found in columns’ val-

ues.
has_unique_index(df) Asserts that df ’s index is unique.

Continued on next page

8 Chapter 2. Usage

Bulwark Documentation, Release 0.4.2

Table 2 – continued from previous page
is_monotonic(df[, items, increasing, strict]) Asserts that the df is monotonic.
is_same_as(df, df_to_compare, **kwargs) Asserts that two pd.DataFrames are equal.
is_shape(df, shape) Asserts that df is of a known row x column shape.
multi_check(df, checks[, warn]) Asserts that all checks pass.
one_to_many(df, unitcol, manycol) Asserts that a many-to-one relationship is preserved be-

tween two columns.
unique(df[, columns]) Asserts that columns in df only have unique values.
within_n_std(df[, n]) Asserts that every value is within n standard deviations

of its column’s mean.
within_range(df[, items]) Asserts that df is within a range.
within_set(df[, items]) Asserts that df is a subset of items.

2.6.2 bulwark.decorators

Functions

CustomCheck(check_func, *args, **kwargs) Assert that func(df, *args, **kwargs) is true.
decorator_factory(decorator_name, func) Takes in a function and outputs a class that can be used

as a decorator.

Classes

BaseDecorator(*args, **kwargs)
HasColumns alias of bulwark.decorators.

decorator_factory.<locals>.
decorator_name

HasDtypes alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

HasNoInfs alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

HasNoNans alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

HasNoNegInfs alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

HasNoNones alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

HasNoX alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

HasSetWithinVals alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

Continued on next page

2.6. API 9

Bulwark Documentation, Release 0.4.2

Table 4 – continued from previous page
HasUniqueIndex alias of bulwark.decorators.

decorator_factory.<locals>.
decorator_name

IsMonotonic alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

IsSameAs alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

IsShape alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

MultiCheck alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

OneToMany alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

Unique alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

WithinNStd alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

WithinRange alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

WithinSet alias of bulwark.decorators.
decorator_factory.<locals>.
decorator_name

2.7 Contributing

2.7.1 Set up Git and a GitHub Account

• If you don’t already have a GitHub account, you can register for free.

• If you don’t already have Git installed, you can follow these git installation instructions.

2.7.2 Fork and Clone Bulwark

1. You will need your own fork to work on the code. Go to the Bulwark project page and hit the Fork button.

2. Next, you’ll want to clone your fork to your machine:

git clone https://github.com/your-user-name/bulwark.git bulwark-dev
cd bulwark-dev
git remote add upstream https://github.com/ZaxR/bulwark.git

10 Chapter 2. Usage

https://help.github.com/en/articles/set-up-git
https://github.com/ZaxR/bulwark

Bulwark Documentation, Release 0.4.2

2.7.3 Set up a Development Environment

Bulwark supports Python 3.5+. It’s recommended to use version 3.5 for development to ensure newer features aren’t
accidentally used, though CI tools will check all versions on the creation of a PR.

2.7.4 Create a Feature Branch

Bulwark loosely follows the gitflow workflow. To add a new feature, you will create every feature branch off of the
develop branch:

git checkout develop
git checkout -b feature/<feature_name_in_snake_case>

2.7.5 Development Practices and Standards

• Unit tests covering added/changed code are required for a PR to be merged. There is currently no CI check for
coverage, but this will be manually enforced. Test-Driven Development (TDD) is encouraged.

• Any new module, class, or function requires a docstring, in the Google docstring format.

• Please follow PEP-8

2.7.6 Create a Pull Request to the develop branch

Create a pull request to the develop branch of Bulwark. Tests will be be triggered to run via Travis CI. Check that your
PR doesn’t fail any tests, since it won’t be reviewed for inclusion until it passes all tests.

2.7.7 For Maintainers

When it’s time to create a release candidate, a new branch should be created from develop:

git checkout develop
git checkout -b release/x.x.x

However, several additional steps must also be taken:

1. Update version in project_info.py, which updates three spots: setup.py, bulwark/__init__.py, and docs/conf.py

2. Update the CHANGELOG.md/changelog.rst and the main README.md/index.rst (as appropriate).

3. Rebuild the docs in your local version using:

pip install -e ".[dev]"
sphinx-apidoc -o ./docs/_source ./bulwark -f
cd docs
make html

4. Test distribution using TestPyPI with Twine

Installation
python3 -m pip install --user --upgrade setuptools wheel
python3 -m pip install --user --upgrade twine

(continues on next page)

2.7. Contributing 11

https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://help.github.com/en/articles/creating-a-pull-request-from-a-fork
https://travis-ci.com/ZaxR/bulwark

Bulwark Documentation, Release 0.4.2

(continued from previous page)

Build/Upload dist and install library
python3 setup.py sdist bdist_wheel
python3 -m twine upload --repository-url https://test.pypi.org/legacy/ dist/*
pip install --index-url https://test.pypi.org/simple/ bulwark

5. Manually upload to PyPI for real

4. Merge the release candidate into both master (which will trigger updates for PyPi and readthedocs) and develop.

12 Chapter 2. Usage

Python Module Index

b
bulwark.checks, 8
bulwark.decorators, 9

13

Bulwark Documentation, Release 0.4.2

14 Python Module Index

Index

B
bulwark.checks (module), 8
bulwark.decorators (module), 9

15

	Why?
	Installation

	Usage
	Changelog
	Installation
	Quickstart
	Design
	Examples
	API
	Contributing

	Python Module Index
	Index

